

Roadway Safety Design

An Engineer's Guide to Evaluating the Safety of Design Alternatives

Course Notes Product 5-4703-01-P3

Multilane Highways and Freeways Workshop July 2009 Published: February 2010 http://tti.tamu/documents/5-4703-01-P3.pdf

INCORPORATING SAFETY INTO THE HIGHWAY DESIGN PROCESS: MULTILANE HIGHWAYS AND FREEWAYS WORKSHOP

Date: Location: Instructor:

Web Site:

Agenda

9:00	Introduction
9:15	Session 1: Review of Highway Safety Issues
9:30	Session 2: Overview of Safety Evaluation
9:55	Break
10:10	Session 2: Overview of Safety Evaluation (continued)
10:40	Session 3: Procedure for Multilane Highway Segments
12:00	Lunch Break
1:00	Session 4: Procedure for Freeway Segments
2:00	Session 5: Procedure for Interchange Ramps
2:20	Break
2:35	Session 6: Section Evaluation
3:10	Session 7: Alternatives Analysis
4:00	Wrap-Up, Complete Course Review Form
4:10	Adjourn
Course	Materials: Course Workbook
	Roadway Safety Design Workbook
	Texas Roadway Safety Design (TRSD) software

http://tcd.tamu.edu/documents/rsd.htm

2009

Welcome • Introductory Session - Objectives, outcomes, scope, main points - Background - Agenda • Instructors

- Jim Bonneson
- Mike Pratt
 - Researchers with TTI
 College Station

Objectives & Outcomes

· Objectives

- To inform participants about:
 - Safety impacts of design alternatives
 - Availability of tools for evaluating safety impact
- To demonstrate how to apply these tools

Outcomes

- Participants should be able to:
 - Apply the evaluation tools to typical designs

Evaluate the safety associated with a design

Scope

- Scope
 - Workshop is intended to show engineers and technicians how various analysis tools can be used to evaluate the level of safety associated with a roadway
 - Analysis based on facility components
 - Roadway segment
 - Intersection
 - Interchange ramp

Main Points

Seven Points to Remember

•

- 1. Large variability in crash data makes it difficult to observe a change in crash frequency due to change in geometry at one site
- 2. Statistical evaluation of many crashes at many treated sites is needed to quantify true effect of a change
- 3. Adherence to design controls does not ensure safety
- 4. Many geometric design elements influence safety
- 5. Evaluation should focus on key design elements
- 6. Evaluation is most helpful in complex or atypical situations
- 7. Engineer should weigh all impacts when deciding

More Information

Safety Resources from Project 0-4703

- Roadway Safety Design Workbook
- Roadway Safety Design Synthesis
- Procedures Guide

– Texas Roadway Safety Design software

- Web Address
 - http://tcd.tamu.edu/documents/rsd.htm
 - Also link from DES-PD site CROSSROADS
 - Check periodically for updates

Agenda

Session 1:

- Review of highway safety issues

Session 2:

- Overview of safety evaluation

Session 3:

– Procedure for multilane highway segments

Lunch Break

Policy on Questions

- Policy Points
 - Questions are encouraged
 - Please ask them as they occur to you

1. Highway Safety Issues

- Key Highway Design Elements
- Safety-Conscious Design
- Crash Data Variability

Key Design Elements

- · Design Elements that Influence Safety
 - Cross slope
 Superelevation
 - Lane width
 - Shoulder width
 - Median width and type
 - Bridge width

- Design speed

- Structural capacity
- Horizontal alignment
- Vertical curvature
- Grade
- Stopping sight distance

Horizontal clearance
Guardrail length

Safety-Conscious Design

AASHTO Guidance

- "Consistent adherence to minimum [design criteria] values is not advisable"
- "Minimum design criteria may not ensure adequate levels of safety in all situations"
- "The challenge to the designer is to achieve the highest level of safety within the physical and financial constraints of a project"
 - Highway Safety Design and Operations Guide, 1997

Overcoming Variability

- Summary
 - Large variability makes it difficult to observe a change in crash frequency due to change in geometry at one site
 - Large variability in crash data may frustrate attempts to confirm expected change
 - Large databases needed to overcome large variability in crash data
 - Statistics must be used to accurately quantify effect

2. Safety Evaluation

- Safety Prediction Model
- Analysis Procedures
- Texas Roadway Safety Design Software

Base Model

Purpose

- Crash frequency for "typical" segment
- Typical: 12 ft lanes, 8 ft outside shoulder, etc.
- Injury (plus fatal) crash frequency

Calibration

- Analyst can adjust model estimate to better match local conditions
 - Know that models are calibrated using Texas data
 - If, after using models for several projects, it appears that models consistently over-estimate or underestimate crash frequency, then calibration may be needed

Definition

- Change in crash frequency for a specific change in geometry
- Adapts base model to atypical conditions
- One AMF per design element (e.g., lane width)
- More than 70 AMFs in Workbook
- Example: 4 lane highway
 - Base condition: 12 ft lanes
 - Roadway has 10 ft lanes
 - AMF = 1.11

Empirical Bayes Adjustment

Questions

- What if X crashes were reported in last 3 yrs?
- Should we use "C" or "X/3" as best estimate?
- "C" represents average for typical locations
- "X/3" represents location of interest, but has some uncertainty attached
- Answers
 - Use weighted average of both "C" and "X/3"
 - Result is more accurate than "C" or "X/3"
 - See Procedures Guide (0-4703-P5)

Safety Prediction Procedure

- Overview
 - Six steps
 - Use base model and AMFs in Workbook
 - Evaluate a specific roadway segment or intersection (i.e., facility component)
 - See Procedures Guide (0-4703-P5)
- Output
 - Estimate of crash frequency for segment or intersection

Step 3

- Gather Data for Subject Component
 - Data may include
 - Roadway geometry (lane width, etc.)
 - Traffic (ADT, truck percentage, etc.)
 - Traffic control devices (stop sign, signal)
 - Crash data (for empirical Bayes analysis)
 - What data do I need?
 - Consult Workbook or Spreadsheet

Steps 4, 5, & 6

- 4. Compute Expected Crash Frequency – Use equations in Workbook
- 5. Repeat Steps 3 and 4 for Each Component
- 6. Add Results for Roadway Section
 - Add crash estimates for all components
 - Sum represents the expected crash frequency for the roadway section

Segmentation Process

• Overview

 Divide roadway section into homogeneous segments (Step 2)

Segmentation Process

· Define Initial Segments

- Begin new segment when:
 - ADT changes by 5% or more
 - Number-of-lanes changes
 - Sharp horizontal curvature begins or ends
 - Two-way left-turn lane begins or ends
 - Median begins or ends
 - Lane width changes by 1 ft or more
- Intersections or ramp terminals are not necessarily segment end points
- Curve length includes spirals, if present

Segmentation Process

Adjust Length of Short Segments

- If, after subdivision, a segment is < 0.1 mi
 Combine it with adjacent non-curved segments
 - until the new segment is at least 0.1 mi long
 Use an average value for any design element that changes within this new segment
- Example:
 - Lane width increases from 10 ft to 11 ft midway along a 0.1 mi segment
 - Cannot subdivide since length = 0.1 mi
 - So, estimate safety using average lane width of 10.5 ft

TRSD Spreadsheet

- Texas Roadway Safety Design Spreadsheet
 - Overview
 - Navigation
 - Input
 - Calculations
 - Calibration factors
 - Output
 - Analysis types

TRSD Overview

- Facility Types
 - Freeways 😿
 - Rural Highways 😿
 - Urban Streets
 - Ramps 😿
 - Frontage Roads
 - Rural Intersections
 Urban Intersections

	Calculations	
	Accident Modification Factors	1
		Analysis Year
	Horizontal curve radius (AMF _{or}):	1.00
	Grade (AMFg):	1.00
	Outside clearance (no barrier) (AMF _{ound}):	1.00
Individual	Outside clearance (some barrier) (AMF _{ocsb}):	1.00
	Outside clearance (full barrier) (AMF core):	1.00
AMITS	Side slope (AMF 55):	1.00
	Lane width (AMF _{Iw}):	1.00
	Outside shoulder width (AMFosw):	1.00
	Inside shoulder width (AMF Isw):	1.00
	Median width (no barrier) (AMF awab):	1.00
	Median width (some barrier) (AMF _{awsb}):	1.00
	Median width (full barrier) (AMF and):	1.00
Combined	Truck presence (AMF (k):	1.00
Combined	 Combined AMF (product of all AMFs above) (AMF combined): 	1.00

Calibration Factors

Local Calibration Factors

- Factor is multiplied by base model estimate
- If changed to say 1.10, estimate increases 10%
 Models currently calibrated using CRIS data
- MODEIS CUITEINITY CANDIALEO USING CRIS UALO

Median Type	Through Lanes	Crash Type Subset	Location	а	b	с	Over- Disp. (k)	Calib. Factor (f
Undivided	4	Multiple-vehicle	Segment	0.00749	1.63	0.001	3.08	1.00
		Single-vehicle	Segment	0.109	0.631	0.001	4.3	1.0
		Driveway-related	Driveway	0.0169	0.738	0.000067	1.11	1.0
Nonrestrictive	4	Multiple-vehicle	Segment	0.00527	1.8	0.001	3.08	1.0
Nonrestrictive		Single-vehicle	Segment	0.0776	0.667	0.001	4.3	1.0
		Driveway-related	Driveway	0.017	1.44	0.000067	1.11	1.0
Restrictive	4	Multiple-vehicle	Segment	0.00549	1.49	0.001	3.08	1.0
		Single-vehicle	Segment	0.106	0.707	0.001	4.3	1.0
		Driveway-related	Driveway	0.0152	1.04	0.000067	1.11	1.0
Driveway Model				Model: nre	s + e Rod +	fnous+g	Rott	
Median Type	Through Lanes	Crash Type Subset	Location	e	t	g		
Undivided	4	Driveway-related	Driveway	2.68	2.33	9.76		
Nonrestrictive	4	Driveway-related	Driveway	2.68	2.33	9.76		
Restrictive	4	Driveway-related	Driveway	2.68	2.33	9.76		

Calibration Parameters

Crash Distributions

- For some AMFs
- Values represent proportion of crashes influenced by specific geometric design elements (e.g., shoulder width, lane width)

Crash Type No.	Crash Type Subset	Median Type	Through Lanes	Proportion Crashes	Applicable AMFs
1	Single-vehicle run-off-road crashes, either side.	Undivided	. 4	0.32	Outside clearance (no barrier), Side slope
		Nonrestrictive	4	0.32	Outside shoulder width
	Single-vehicle run-off-road crashes, right side only.	Restrictive	4	0.3	
2	Single-vehicle run-off-road, same-direction	Undivided	4	0.44	Lane Width
	sideswipe, and multiple-vehicle opposite	Nonrestrictive	4	0.44	
	direction.	Restrictive	4	0.59	
3	Single-vehicle run-off-road (left-side only)	Undivided	4		Inside shoulder width
	and multiple-vehicle opposite direction.	Nonrestrictive	4		Provide the case of proceeding and the set
		Restrictive	4	0.24	

Outp	ut S	Summ	ary	
Output				
			-	
– Estimate of e	expect	ed crash f	requen	cy
- For analysis		nd arach no	riad (EP	\
• Por analysis	s year a	nu crash pe)
 Injury (plus) 	fatal) cr	ashes		
		uo1100		
• All crash ty	pes (sin	gle vehicle,	rear-end	d, etc.)
• All crash ty – AMF indicat	pes (sin es dev	gle vehicle, iation from	rear-end	d, etc.) c <i>al"</i>
• All crash ty – AMF indicate	pes (sin es dev	gle vehicle, iation fron	rear-end n "typic	d, etc.) cal"
• All crash ty – AMF indicate	pes (sin e s dev i	gle vehicle, iation fron	rear-end n "typic	d, etc.) c a/ "
• All crash ty – AMF indicate	pes (sin e s dev i	gle vehicle, iation from	rear-end n "typic	d, etc.) cal"
All crash ty All crash ty AMF indicate General Information Safety Pred	pes (sin es devi	gle vehicle, iation from	rear-end n "typic	d, etc.) cal"
All crash typ All crash typ AMF indicate Safety Pred Safety Pred Adaytic MPP Adaytic MPP	pes (sin es devi	gle vehicle, iation from	rear-end n "typic ^{Ays}	d, etc.) cal"
All crash typ AMF indicate Safety Pred Safety	iction Worksheet	gle vehicle, iation from for Rural Four-Lane Highw Site Information Highway rumber: Roadway segment: District:	rear-end n <i>"typic</i> ^{////////////////////////////////////}	d, etc.) cal"
All crash typ All crash typ AMF indicate Saley Pred Saley Pred Saley Tree Saley Tree Saley Tree Saley Tree	iction Worksheet	gle vehicle, iation from for Rural Four Lane Highw Highway mober Roadway segment. District: Analysis year	rear-end n "typic ^{0.5.43}	d, etc.) c al "
All crash typ All crash typ AMF indicate Setey Pred Amyrt beP Agency Tm Data performst Ana 24 2029 Locator Moder Mana 24 2029	iction Worksheet Analysis Year	gle vehicle, iation from for Rural Four-Lane Highw Site Information Highway segment: District: Analysis year	rear-end n "typic 	d, etc.) cal"

Analysis Types

- Types 1 and 2
 - Type 1 No Crash Data
 - Use calibrated base model in Workbook – Type 2 – With Crash Data
 - Use calibrated base model <u>and</u> crash data
 Use EB analysis to get weighted average of both
- TRSD Definitions
 - Analysis year
 - Year for which expected crash frequency estimate is desired
 - Crash period
 - Time period representing crash data

≠ 3. Highway Segments

Overview

- Safety prediction model
- Accident modification factors
- Exercises

Accident Modification Factors

- AMFs in Workbook
 - 13 available for multilane highways
 - Most are functions of geometric variables (e.g., radius, lane width, etc.)
 - AMFs developed to work with base model (i.e., same underlying base conditions)

Accident Modification Factors

Multilane Highway

- Curve radius
- Grade
- Outside clearance
- No barrier
- Some barrier
- Full barrier
- Side slope
- Lane width

- Shoulder width
 - Outside
 - Inside
- Median width
 - No barrier
 Some barrier
 - Full barrier
- Truck presence

21

Note About Limits

Bounds on Input Variables

- Based on range of data used to develop AMF
- If range is exceeded:
 - We are not sure what AMF value is
 - Extrapolation is risky
 - Recommend not exceeding AMF value at limit

– Example:

=

- Bound on grade is 8%
- For grade of 9%, what is the AMF?
- Recommend using 1.16 (the value for 8%)

Outside Clearance

- No Barrier
- Base Conditions
 30-ft clearance
- 8-ft shoulder
- Limits
 - Clearance ≤ 30 ft
- Notes
 - Measure clearance from traveled way

Analysis Year (always fill out)

Analysis Year (always fill out)

Example

Solution

_

- Step 1. Fill out the Inside Barrier worksheet

4.ft Inside Shoulder Width 1.0 15 20 25 30 35

- *Median width* ≥ 14 ft• Notes
 - Use Inside Barrier worksheet
 - Not for justifying addition or removal

Median Width, ft

- What is the expected crash frequency?

= Exercise 1: Rural Highway

- Additional Questions
 - What does the combined AMF say about this segment, relative to the typical segment?
 - Which attributes tend to increase crashes on this segment, relative to the typical segment?

≠ Exercise 1: Rural Highway

Additional Questions

- From 1/1/1999 to 12/31/2001, the following injury (+ fatal) crashes were reported:
 - 11 multiple-vehicle, 6 single-vehicle, 1 driveway
- What is the expected crash frequency (ECF) for these years?
 - 6.00 cr/yr (= [11 + 6 + 1]/3), or
 - 4.54 cr/yr, or
 - 5.20 cr/yr
≠ Exercise 1: Rural Highway

Additional Questions

- The crash data are a little old. It is currently 2009 and the ADT is 25,000; what is the ECF?

Now it's your turn. . .

- Exit sheet without saving, and then re-load it

= Exercise 2: Rural Highway

Answer

= Exercise 2

Answer

Incorporating Safety into the Highway Design Process

Part II. Rural Multilane Highways and Freeways

Agenda

- Session 4:
 - Procedure for freeway segments
- Session 5:
 - Procedure for interchange ramps
- Session 6: – Section evaluation
- Session 7:
 - Alternatives analysis

茾 4. Freeway Segments

- Overview
 - Safety prediction model
 - Accident modification factors
 - Exercises

⊥ T		Exa	mpl	e	
۰Sc	olution				
			• •		
-	Assume ne	o crash	data		
-	Bamp	Entrance Data Calc	lation Worksheet	or Freeways	_
Crash Period	(In our this section only	if crash data are avai	lable)	loi i i cewaya	
Input Data				Messages	
Segment length (J	.), mi:	\sim		Ramp lengths exceed segment I	ength.
Ramp Entrance	Location	Length of R Segmen	amp Entrance <u>in</u> t (L _{enr.zeg}), mi	(Lear), management	Ratio (Lanr. seg /Lanr)
	+			+	
Analysis Year	(always fill out this section	n when ramp entran	ces are present on,	or planned for, the segment)	
Input Data				Messages	
Segment length (J	.), mi: 0.2			OK	
Ramp Entrance	Location	Length of R Segmen	amp Entrance <u>in</u> t (L _{enr,seg}), mi	Length of Ramp Entrance (Lenr), mi	Ratio (Lanr.seg/Lanr)
1 MP 1.2	2 to MP 1.3		0.1	0.15 OK	0.67
2					
		Sum1:	0.10	Sum2:	0.67
Proportion of segr	nent length adjacent to a ramp	entrance (Perr):	0.25 Average r	amp entrance length (I _{ear}), ft:	

1.0 0.00

– Now it's your turn...

<u> </u>	Example
• Given	
– Segn	nent length, L: 2.1 mi
– Leng – Ramj	th of ramp 1 in segment, L _{enr,seg} : 0.2 mi o 1 length, L _{enr} : 0.2 mi
– Leng – Ramj – Crasi	th of ramp 2 in segment, L _{enr,seg} : 0.3 mi o 2 length, L _{enr} : 0.3 mi h data are available
• Questi	on
– What	is the ramp entrance AMF?

Example

Solution

- Step 1. Fill out the Weaving Section worksheet

Example Solution Step 2. Go to segment worksheet and indicate weaving section presence

Average ramp entrance length (I _{enr}), ft:	
	entran
Proportion of length adjacent to a ramp entrance (Perr):	cittant
Presence of one or more weaving sections: Yes Yes	Weavin
Average weaving section length (/wev), ft: 2376 2376	section
Proportion of length adjacent to a weaving section (Pwey): 0.45 0.45	Section

⊥ T	Exerc	cise (3: Fr	eeway	
۰Sc	olution				
	Weaving S	ection v	vorksh	eet	
Crash Period	(fill out this section only	if crash data are avai	able)		
Input Data	(1. m)			Messages	
Weaving Section	Location	Length of We Segment	aving Section <u>in</u> (L _{weecoog}), mi	Length of Weaving Section (Lucy), mi	Ratio
1 MP 10	.2 to MP 10.7		0.5	0.5 ×	1.00
2 MP 10	.3 to MP 10.7		0.4	0.4 xx	1.00
		Sum1:	0.90	Sum2:	2.00
Proportion of seg	ment length adjacent to a weav	ing section (Pwww):	0.45 Average w	/eaving section length (/ _{wwv}), ft:	1
Anaburie Year	(always fill out this secti	on when weaving sec	tions are present or	or planned for the segment	
Input Data	amays in our uns socu	on when weaving sec	ions are present on	Messages	
Segment length (L), mi: 1			OK	
Weaving Section	Location	Length of W Segment	aving Section <u>in</u> ((L _{wer,seg}), mi	Length of Weaving Section (Lucy), mi	Ratio (Luer.zeg/Luer
1 MP 10	I.2 to MIP 10.7		0.5	0.5 pK	1.00
2 MP 10	I.3 to MP 10.7		0.4	0.4 pK	1.00
		Sum1:	0.90	Sum2:	2.00
Proportion of segr	ment length adjacent to a weav	ing section (P _{wev}):	0.45 Average w	eaving section length (/wev), ft:	2

_		

= Exercise 3: Freeway

Additional Question

- What is the crash frequency if the cross section is changed?
 - Lane width: 12 ft
 - Outside shoulder width: 10 ft
 - Outside barrier offset: 12 ft
 - Horizontal clearance: 19 ft
- Hint: change only the "Analysis Year" data
- Now it's your turn. . .
 - Exit sheet without saving, and then re-load it

Exercise 4: Freeway

Solution

$\stackrel{\perp}{=}$ Exercise 4: Freeway

Answer

Question

- What is the expected crash frequency if six
 0.06-mi lengths of barrier are installed along the roadside (three lengths per side)?
 Width from traveled way to face of barrier: 12 ft
- Hint: use the Analysis Year column and the Outside Barrier worksheet

= Exercise 4: Freeway

Answer

т

Questions – Comments?

Exercise 5: Ramp

• Given

- Freeway ramp
 - Volume: 2500 veh/d
 - Type: Entrance
 - Configuration: Slip
- Question
 - What is the expected crash frequency?

Exercise 5: Ramp

Additional Question

- What is the crash frequency for an exit ramp with similar conditions?
 - Ramp type: Exit
 - All other data are unchanged
- Now it's your turn. . .

Exercise 6: Ramp

• Given

- Highway ramp
 - Volume: 2500 veh/d
 - Type: Exit
 - Configuration: Diagonal
- Question
 - What is the expected crash frequency?

Exercise 6: Ramp

Answer

Exercise 6: Ramp

Additional Questions

- What is the crash frequency for an entrance ramp with similar conditions?
 - Ramp type: Entrance
 - All other data are unchanged
- What is the crash frequency of the entrance
 - ramp if it is reconfigured?
 - Ramp type: Entrance
 - Ramp configuration: Non-free-flow loop
 - All other data are unchanged

6. Section Evaluation

- Review Safety Prediction Procedure
- Road Section Evaluation
- Project Evaluation

Safety Prediction Procedure

Six Steps

- 1. Identify roadway section
- 2. Divide section into facility components
- 3. Gather data for subject component
- 4. Compute expected crash frequency
- 5. Repeat steps 3 and 4 for each additional component
- 6. Add up results for roadway section

Exercise 7: Section Evaluation

- Answers
 - Segment "a"

Exercise 7: Section Evaluation

- Answers
 - Segment "b"

– Entire highway section

Exercise 8: Project Evaluation

- Answers
 - North/south road (Ex. 2-a)
 - East/west road (Ex. 7 "a")
 - Intersection (given)
 - Entire facility

Exercise 8: Project Evaluation

- Additional Questions
 - What is the best measure of safety benefit?
 - Which facility component(s) may yield the most benefit through design change?
- Answers
 - Expected number of crashes reduced is the best measure of safety benefit
 - Segments or intersections with many crashes have more potential for a large safety benefit through a design change, so. . .

Exercise 8: Project Evaluation

- Additional Questions
 - What does the combined AMF tell us?
 - What does it mean when the combined AMF is greater than 1.0?
- Answers
 - The combined AMF tells us about "relative risk"
 - Values larger than 1.0 indicate the component is potentially less safe than the "typical" one
 - So. . .

Exercise 8: Project Evaluation

- Additional Question
 - How do we use both crash frequency and combined AMF to make design decisions?
- Answer
 - 1) Identify components that have a combined AMF > 1.0
 - 2) Rank them in order of crash frequency
 - 3) Identify potential design changes at those components with a larger crash frequency

7. Alternatives Analysis Analysis Questions How do you incorporate safety considerations in the design process? Which alternative is the best?

ative 2

Exercise 9: Alternatives Analysis

Analysis Process

1) Identify components that have a combined AMF > 1.0

2) Rank them in order of crash frequency

3) Identify potential design changes at those components with a larger crash frequency

Exercise 9a: Alternatives Analysis

Alternative A

- Treatment
 - Increase shoulder width for north/south road
- Repeat the analysis for Exercise 2, but:
 - Outside shoulder: increase from 6 to 10 ft
 - Inside shoulder: increase from 2 to 4 ft
 - Side slope: increase from 1:6 to 1:4

Exercise 9a: Alternatives Analysis

- Question
 - Is this alternative safer than the current configuration?
- Answer
 - Expected crash frequencies:
 - North/south road (Ex. 2-b):
 - East/west road (Ex. 7 "a"):
 - Intersection:
 - Facility:

Exercise 9a: Alternatives Analysis

- Question
 - Given
 - \$750,000 construction cost
 - 25-year life span
 - \$100,000 benefit per crash prevented
 - Is this alternative viable?
- Answer

Exercise 9a: Alternatives Analysis

- Discussion
 - Requires increase in side slope
 - Increase in shoulder width likely to provide offsetting benefit

Exercise 9b: Alternatives Analysis

Alternative B

- Treatment
 - Realign east/west road to eliminate skew
 - Requires addition of four curves
 - Crash estimates from Exercises 2 and 7

Exercise 9b: Alternatives Analysis

Question

- Is this alternative safer than the current configuration?
- Answer
 - Expected crash frequencies:
 - North/south road (Ex. 2-a):
 - East/west road (Ex. 7 "b"+...+ "e"):
 - Intersection:
 - Facility:

Exercise 9b: Alternatives Analysis

Question

- Given
 - \$1,800,000 construction cost
 - 25-year life span
 - \$100,000 benefit per crash prevented
- Is this alternative viable?
- Answer

Exercise 9b: Alternatives Analysis

- Discussion
 - Requires some right-of-way acquisition
 - Addition of curves increases crashes
 - +0.15 crashes/yr (= 0.56 0.41) – Eliminating skew reduces crashes
 - -1.36 crashes/yr (= 3.32 1.96)
 - Observations
 - If the intersection were signalized, skew would not pose a safety problem
 - Signal warrants are not satisfied

Exercise 9c: Alternatives Analysis

Analysis

- Northbound exit ramp
 - Volume: 1000 veh/d
 - Type: Exit
 - Configuration: Diagonal
- Question
 - What is the expected crash frequency?
- Answer

Exercise 9c: Alternatives Analysis

Analysis

- Southbound entrance ramp
 - Volume: 1000 veh/d
 - Type: Entrance
 - Configuration: Diagonal
- Question
 - What is the expected crash frequency?
- Answer

Exercise 9c: Alternatives Analysis

- Question
 - Is this alternative safer than the current configuration?
- Answer
 - Expected crash frequencies:
 - North/south road (Ex. 2-a):
 - East/west road (Ex. 7 "a"):
 - Ramps + terminals:
 - Facility:

Exercise 9c: Alternatives Analysis

- Question
 - Given
 - \$6,500,000 construction cost
 - 25-year life span
 - \$100,000 benefit per crash prevented
 - Is this alternative viable?
- Answer

Exercise 9c: Alternatives Analysis

- Discussion
 - Operational benefits (not computed) may still justify the project
 - Analysis does not consider rate of traffic growth over time at this location

Exercise 9c: Alternatives Analysis

 Finding
 Current
 Alt. A
 Alt. B
 Alt. C

 Construction Cost, \$1000
 Image: Const, \$1000
 Image: Const, \$1000
 Im

Safety benefit, \$1000/yr

Capital cost, \$1000/yr

Benefit-cost ratio

Net benefit, \$1000/yr

Questions

- Which alternative is best based on safety benefit and cost?
- What does the larger net benefit for Alt. B tell us?

Exercise 9: Alternatives Analysis

Alternative Selection Summary

- Establish a goal of reducing total crash frequency by some amount
- Exclude projects that do not provide minimum benefit
- Exclude projects that exceed available funds
- If funds are earmarked for this project:
 Use net benefit to select project
- If unspent funds can be used for other projects:
 Use benefit-cost ratio to select projects

Exercise 9: Alternatives Analysis

· Observations

- Our computations reflect only safety impact
 Different conclusions may be reached if other impacts are considered
- Final decision must consider all impacts
 - Safety
 - Environment
 - Traffic operations
 - Right-of-way
 - Construction costs
- Choose the most cost-effective alternative

Summary

Main Points

٠

- 1. Large variability in crash data makes it difficult to observe a change in crash frequency due to change in geometry at one site
- Statistical evaluation of many crashes at many treated sites is needed to quantify true effect of a change
- 3. Adherence to design controls does not ensure safety
- 4. Many geometric design elements influence safety
- 5. Evaluation should focus on key design elements
- 6. Evaluation is most helpful in complex or atypical situations
- 7. Engineer should weigh all impacts when deciding

Wrap-Up

- Questions or Comments?
- A Request
 - Please fill out the course review form
 - Training course coordinators
 - Return course evaluations and sign-in sheets to Rory Meza in Design Division
- Thank You!

EXERCISES

1. RURAL MULTILANE HIGHWAY SEGMENT 2. RURAL MULTILANE HIGHWAY SEGMENT 3. FREEWAY SEGMENT 4. FREEWAY SEGMENT 5. INTERCHANGE RAMP 6. INTERCHANGE RAMP 7. SECTION EVALUATION 8. PROJECT EVALUATION 9a. ALTERNATIVE A 9b. ALTERNATIVE B 9c. ALTERNATIVE C

EXERCISE 1: RURAL MULTILANE HIGHWAY SEGMENT

INPUT DATA

Basic Roadway Data	
Number of through lanes: 4	
Segment length: 2 mi	
Number of driveways: 2 residential, 4 business	
Traffic Data	
Speed limit: 60 mph	
Percent trucks represented in ADT: 10 percent	
Average daily traffic (ADT): 22,000 veh/d	
Geometric Data	
Presence of horizontal curve: No	
Grade: 0 percent	
Cross Section Data	
Lane width: 11 ft	
Outside shoulder width: 8 ft	
Median type: Nonrestrictive	
Median width: 16 ft	
Presence of barrier in median: None	
Roadside Data	
Horizontal clearance: 30 ft	
Presence of barrier on roadside: None	
Side slope: 1:6	
UTPUT SUMMARY	

What is the expected crash frequency? What is the combined AMF?

What does the combined AMF say about this segment, relative to the typical segment?

Which attribute(s) tend to increase the crash rate of this segment, relative to the typical segment?

If the following injury + fatal crashes were reported from 1/1/1999 to 12/31/2001: Multiple-vehicle: 11 Single-vehicle: 6 Driveway: 1	
What is the expected crash frequency?	
If the ADT increases to 25,000 veh/d, what is the expected crash frequency?	
EXERCISE 2: RURAL MULTILANE HIGHWAY SEGMENT

INPUT DATA

Basic Roadway Data

Traffic Data

Number of through lanes: 4 Segment length: 2 mi

Number of driveways: 4 residential

Speed limit: 60 mph	
Percent trucks represented in ADT: 15 percent	
Average daily traffic (ADT): 17,000 veh/d	
Geometric Data	
Presence of horizontal curve: No	
Grade: 1 percent	
Cross Section Data	
Lane width: 12 ft	
Outside shoulder width: 6 ft	
Inside shoulder width: 2 ft	
Median type: Restrictive	
Median width: 20 ft	
Presence of barrier in median: Full	
• In center of median	
• Inside barrier width: 2.5 ft	
• No short barrier elements present	
Roadside Data	
Horizontal clearance: 30 ft	
Presence of barrier on roadside: None	
Side slope: 1:6	
•	
OUTPUT SUMMARY	
What is the expected crash frequency?	
What is the combined AMF?	
If the shoulders are widened to:	
Outside shoulder width: 10 ft	
Inside shoulder width: 4 ft	
Side slope: 1:4	
What is the expected crash frequency?	

What is the combined AMF?

EXERCISE 3: FREEWAY SEGMENT

INPUT DATA

Crash Data

Time period: 1/1/1999 to 12/31/2001Count of injury + fatal crashes:

- 13 multiple-vehicle
- 6 single-vehicle
- 1 ramp-exit-related

Basic Roadway Data

Number of through lanes: 6 Area type: Urban Segment length: 1 mi Number of ramp entrances: 2 Number of ramp exits: 2

Traffic Data

Speed limit: 60 mph Percent trucks represented in ADT: 10 percent

Average daily traffic: 82,000 veh/d (crash period); 86,000 veh/d (analysis year)

Geometric Data

Presence of horizontal curve: No

Grade: 0 percent

Cross Section Data

Lane width: 11 ft Outside shoulder width: 6 ft Inside shoulder width: 4 ft Median type: Nonrestrictive Presence of barrier in median: None Median width: 50 ft Presence of shoulder rumble strips: Yes

Roadside Data

Horizontal clearance: 15 ft

Presence of barrier on roadside: Some

• Length = 0.8 mi, offset = 8 ft

Access Data

Presence of one or more ramp entrances: No

Presence of one or more weaving sections: Yes

- Weaving section 1: length = 0.5 mi, entire length on segment
- Weaving section 2: length = 0.4 mi, entire length on segment

OUTPUT SUMMARY

What is the expected crash frequency?	
What is the combined AMF?	
If the cross section is changed to: Lane width: 12 ft Outside shoulder width: 10 ft Outside barrier offset: 12 ft Horizontal clearance: 19 ft	
What is the expected crash frequency?	
What is the combined AMF?	

EXERCISE 4: FREEWAY SEGMENT

INPUT DATA

Crash Data

Time period: 4/1/2003 to 3/31/2006Count of injury + fatal crashes:

- 5 multiple-vehicle
- 10 single-vehicle
- 1 ramp-entrance-related

Basic Roadway Data

Number of through lanes: 4

Area type: Rural Segment length: 2.1 mi Number of ramp entrances: 2 Number of ramp exits: 2

Traffic Data

Speed limit: 60 mph Percent trucks represented in ADT: 20 percent Average daily traffic: 27,000 veh/d (crash period); 29,000 veh/d (analysis year)

Geometric Data

Presence of horizontal curve: No

Grade: 0 percent

Cross Section Data

Lane width: 12 ft Outside shoulder width: 10 ft Inside shoulder width: 4 ft Median type: Nonrestrictive Presence of barrier in median: None Median width: 40 ft Presence of shoulder rumble strips: No

Roadside Data

Horizontal clearance: 20 ft

Presence of barrier on roadside: None

Access Data

Presence of one or more ramp entrances: Yes

• Ramp entrance 1: length = 0.2 mi, entire length on segment

• Ramp entrance 2: length = 0.3 mi, entire length on segment Presence of one or more weaving sections: No

OUTPUT SUMMARY

What is the expected crash frequency?	
What is the combined AMF?	
If the following roadside barrier pieces are added: Six identical pieces (three pieces per side) Length: 0.06 mi Width from traveled way to face of barrier: 12 ft	
What is the expected crash frequency?	
What is the combined AMF?	

Г

EXERCISE 5: INTERCHANGE RAMP

INPUT DATA

Traffic Data	
Average daily traffic on ramp:	2500 veh/d
Geometric Data	
Ramp type: Entrance	
Ramp configuration: Slip	

OUTPUT SUMMARY

What is the expected crash frequency?	
For an exit ramp with similar conditions: Ramp type: Exit All other input data are unchanged	
What is the expected crash frequency?	

EXERCISE 6: INTERCHANGE RAMP

INPUT DATA

Traffic Data Average daily traffic on ramp: 2500 veh/d Geometric Data Ramp type: Exit Ramp configuration: Diagonal	
OUTPUT SUMMARY	
What is the expected crash frequency?	
For an entrance ramp with similar conditions: Ramp type: Entrance All other input data are unchanged	
What is the expected crash frequency?	
If the entrance ramp is reconfigured: Ramp configuration: Non-free-flow loop All other input data are unchanged	
What is the expected crash frequency?	

EXERCISE 7: SECTION EVALUATION

Location: Rural multilane highway segment "a"

INPUT DATA

Daste	Koadway Data
	Number of through lanes: 4
	Segment length: 1.36 mi
	Number of driveways: 5 business
Traffi	c Data
	Speed limit: 60 mph
	Percent trucks represented in ADT: 13 percent
	Average daily traffic (ADT): 4000 veh/d
Geom	etric Data
	Presence of horizontal curve: No
	Grade: 0 percent
Cross	Section Data
	Lane width: 12 ft
	Outside shoulder width: 8 ft
	Median type: Nonrestrictive
	Median width: 14 ft
	Presence of barrier in median: None
Roads	ide Data
	Horizontal clearance: 30 ft
	Presence of barrier on roadside: None
	Side slope: 1.4

OUTPUT SUMMARY

Record your results in the table on the next page.

EXERCISE 7: SECTION EVALUATION (continued)

Location: Rural multilane highway segment "b"

INPUT DATA

Basic Roadway Data Number of through lanes: 4 Segment length: 0.34 mi Number of driveways: 1 industrial, 1 business **Traffic Data** Speed limit: 60 mph Percent trucks represented in ADT: 13 percent Average daily traffic (ADT): 4000 veh/d Geometric Data Presence of horizontal curve: Yes • Curve radius: 1430 ft • Curve length: 0.16 mi Grade: 0 percent **Cross Section Data** Lane width: 12 ft Outside shoulder width: 8 ft Median type: Nonrestrictive Median width: 14 ft Presence of barrier in median: None **Roadside Data** Horizontal clearance: 30 ft Presence of barrier on roadside: None Side slope: 1:4

OUTPUT SUMMARY

Record all results for segments "a" and "b" in this table.

Facility Component	Expected Crash Frequency (crashes/yr)	Combined AMF
Segment "a"		
Segment "b"		
Total for roadway section		

What is the expected crash frequency for segments "b" through "e"?.....

EXERCISE 8: PROJECT EVALUATION (CURRENT CONFIGURATION)

Location: Two intersecting rural multilane highways

Facility Compo	nent Exercise Number	r Expected Crash Frequency (crashes/yr)	Combined AMF
North-south road	2-a (before change)		
East-west road	7 "a"		
Intersection	Given	3.32	1.12
Total for facility			

Please complete the table and answer the questions below.

What is the best measure of safety benefit?

Which facility component(s) may yield the most benefit through design change?

What does the combined AMF tell us?

What does it mean when the combined AMF is greater than 1.0?

How do we use both crash frequency and combined AMF to make design decisions?

EXERCISE 9a: ALTERNATIVE A

Description: Widen the inside and outside shoulders on the north-south road. To provide the increased width while remaining within the right-of-way, it is necessary to reduce the side slope.

Facility Component	Exercise Number	Expected Crash Frequency (crashes/yr)	Combined AMF
North-south road	2-b (after change)		
East-west road	7 "a"		
Intersection	Given	2.95	1.05
Total for facility			

Please complete the table and answer the questions below.

Is this alternative safer than the current configuration (see Exercise 8)?

How many crashes are reduced per year, relative to the current configuration?

Given the following assumptions:

\$750,000 construction cost to widen the shoulders on the north-south road 25-year life span for the project

\$100,000 benefit per crash reduced

Benefit:		crashes/yr reduced x \$100,000/crash reduced = \$			/ yr
Cost: \$		construction cost ÷		yr life span = \$	/ yr
Is this alte	ernative viable?				

What is the net benefit for Alternative A, relative to the current configuration?

EXERCISE 9b: ALTERNATIVE B

Description: Realign the east-west road to eliminate the intersection skew. The realignment requires the addition of two curves on the east-west road.

Facility Component	Exercise Number	Expected Crash Frequency (crashes/yr)	Combined AMF
North-south road	2-a (before change)		
East-west road	7 "b" through "e"		
Intersection	Given	1.96	0.72
Total for facility			

Please complete the table and answer the questions below.

Is this alternative safer than the current configuration (see Exercise 8)? How many crashes are reduced per year, relative to the current configuration? Given the following assumptions: \$1,800,000 construction cost to realign the east-west road 25-year life span for the project \$100,000 benefit per crash reduced crashes/yr reduced x 100,000/crash reduced = \$ Benefit: /yr yr life span = \$ construction cost ÷ Cost: \$ /yr Is this alternative viable? What is the net benefit for Alternative B, relative to the current configuration?

EXERCISE 9c: ALTERNATIVE C

Description: Grade-separate the roads. Use a diamond interchange with four diagonal ramps.

INPUT DATA

Traffic Data Average daily traffic on ramp: 1000 veh/d Geometric Data Ramp type: Exit Ramp configuration: Diagonal

OUTPUT SUMMARY

What is the expected crash frequency?	
For an entrance ramp with similar conditions: Ramp type: Entrance All other input data are unchanged	
What is the expected crash frequency?	

Г

_

EXERCISE 9c: ALTERNATIVE C (continued)

Description: Grade-separate the roads. Use a diamond interchange with four diagonal ramps.

Please complete the table and answer the questions below.

Interchange	Exercise Number	Expected Crash Frequency	Combined
Component		(crashes/yr)	AMF
Western ramp terminal	Given	0.20	0.40
Eastern ramp terminal	Given	0.12	0.40
Southbound exit	6-a		
Northbound entrance	6-b		
Northbound exit	9c		
Southbound entrance	9c		
Total for interchange			

Facility Component	Exercise Number	Expected Crash Frequency (crashes/yr)	Combined AMF
North-south road	2-a (before change)		
East-west road	7 "a"		
Total for interchange	from table above		
Total for facility			

Is this alternative safer than the current configuration (see Exercise 8)?

How many crashes are reduced per year, relative to the current configuration?

Given the following assumptions:

- \$6,500,000 construction cost to grade-separate the roads
- 25-year life span for the project
- \$100,000 benefit per crash reduced

Benefit:		crashes/yr reduced x $100,000$ /crash reduced = \$		/ yr	
Cost: \$		construction cost ÷		yr life span = \$	/ yr
Is this alte	rnative viable?				

What is the net benefit for Alternative C, relative to the current configuration?

INCORPORATING SAFETY INTO THE HIGHWAY DESIGN PROCESS: MULTILANE HIGHWAYS AND FREEWAYS WORKSHOP COURSE REVIEW FORM

Dat Loc	e: ation:					
You	r Agency:					
You	r Position:					
Сог	urse Content (circle one)					
		Yes				No
1.	Did the course meet your expectations? Comments:	1	2	3	4	5
2.	Was the material presented at the correct level of difficulty? Comments:	1	2	3	4	5
3.	Was the topic of the course covered adequately (nothing left out, no one topic overemphasized)? Comments:	1	2	3	4	5
4.	Was the software easy to use? Comments:	1	2	3	4	5

General Observations

5. What did you like most about the course?

6. What did you like least about the course?

7. What can we do to improve this workshop?

8. Other Comments:

Thank you for taking the time to complete this course evaluation form. Please make sure the course instructor receives it before you leave.