Roadway Safety Design

An Engineer's Guide to Evaluating the Safety of Design Alternatives

Course Notes

Product 5-4703-01-P3

SAFETY BY DESIIN

Multilane Highways and Freeways Workshop July 2009
Published: February 2010
http://tti.tamu/documents/5-4703-01-P3.pdf

INCORPORATING SAFETY INTO THE HIGHWAY DESIGN PROCESS: MULTILANE HIGHWAYS AND FREEWAYS WORKSHOP

Date:
Location:
Instructor:
Agenda
9:00 Introduction
9:15 Session 1: Review of Highway Safety Issues
9:30 Session 2: Overview of Safety Evaluation
9:55 Break
10:10 Session 2: Overview of Safety Evaluation (continued)
10:40 Session 3: Procedure for Multilane Highway Segments
12:00 Lunch Break
1:00 Session 4: Procedure for Freeway Segments
2:00 Session 5: Procedure for Interchange Ramps
2:20 Break
2:35 Session 6: Section Evaluation
3:10 Session 7: Alternatives Analysis
4:00 Wrap-Up, Complete Course Review Form
4:10 Adjourn
Course Materials: Course Workbook
Roadway Safety Design Workbook
Texas Roadway Safety Design (TRSD) software
Web Site: http://tcd.tamu.edu/documents/rsd.htm

Incorporating Safety into the Highway Design Process

\qquad
\qquad

Part I. Introduction to Workshop Series

2009

Welcome	
- Introductory Session	
- Objectives, outcomes, scope, main points	
- Background	
- Agenda	
- Instructors	
- Jim Bonneson	
- Mike Pratt	
\quad R Researchers with TTI	
\quad College Station	

Objectives \& Outcomes

\qquad

- Objectives
- To inform participants about:
- Safety impacts of design alternatives
- Availability of tools for evaluating safety impact \qquad
- To demonstrate how to apply these tools
- Outcomes
- Participants should be able to:
- Apply the evaluation tools to typical designs
- Evaluate the safety associated with a design

\qquad
\qquad
\qquad
\qquad

Scope

- Scope

- Workshop is intended to show engineers and technicians how various analysis tools can be used to evaluate the level of safety \qquad associated with a roadway
- Analysis based on facility components
- Roadway segment
- Intersection
- Interchange ramp

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Points

- Seven Points to Remember

1. Large variability in crash data makes it difficult to observe a change in crash frequency due to change in geometry at one site
2. Statistical evaluation of many crashes at many treated sites is needed to quantify true effect of a change
3. Adherence to design controls does not ensure safety \qquad
4. Many geometric design elements influence safety
5. Evaluation should focus on key design elements
6. Evaluation is most helpful in complex or atypical situations
7. Engineer should weigh all impacts when deciding

Background

- Project 0-4703

- "Incorporating Safety into the Highway Design Process"
- Project Director:
- Elizabeth Hilton / Rory Meza
- Key product:
- Roadway Safety Design Workbook
 (Report 0-4703-P2)
- Procedure used...

Background

- Safety Information Development Process

More Information

- Safety Resources from Project 0-4703
- Roadway Safety Design Workbook
- Roadway Safety Design Synthesis
- Procedures Guide
- Texas Roadway Safety Design software
- Web Address
- http:// tcd.tamu.edu/documents/rsd.htm
- Also link from DES-PD site CROSSROADS
- Check periodically for updates

Agenda

- Session 1:
- Review of highway safety issues
- Session 2:
- Overview of safety evaluation
- Session 3:
- Procedure for multilane highway segments
- Lunch Break

Agenda

- Session 4:
- Procedure for freeway segments

- Session 6: \qquad
- Section evaluation
- Session 7:
- Alternatives analysis

Policy on Questions

- Policy Points
- Questions are encouraged
- Please ask them as they occur to you
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1. Highway Safety Issues

- Key Highway Design Elements
- Safety-Conscious Design
- Crash Data Variability
\qquad
\qquad

\qquad
\qquad
\qquad

Key Design Elements

- Design Elements that Influence Safety
- Design speed
- Cross slope
- Lane width
- Superelevation
- Shoulder width
- Vertical clearance
- Length of speed change lane
- Bridge width
- Horizontal clearance \qquad
- Structural capacity
- Horizontal alignment
- Vertical curvature
- Grade
- Stopping sight distance
- Guardrail length

\qquad
\qquad
\qquad

Safety-Conscious Design

- AASHTO Guidance
- "Consistent adherence to minimum [design criteria] values is not advisable"
- "Minimum design criteria may not ensure adequate levels of safety in all situations"
- "The challenge to the designer is to achieve the highest level of safety within the physical and financial constraints of a project"
- Highway Safety Design and Operations Guide, 1997

Crash Data

- Existing Crash Databases
- TxDOT - CRIS
- Local databases
- Severity Scale \qquad
-K: Fatal
- A: Incapacitating injury

Our \qquad

- B: Non-incapacitating injury
- C: Possible injury
- PDO: property damage only
- Reporting Threshold
- \$1000, informally varies among agencies

Crash Data Variability

- Questions
- What is the true mean crash frequency?
- Is a 3-year average reliable?
- Why are there reductions following years 4, 8, 16, 27 ?

Each data point represents 1 year of crash data at the site

Crash Data Variability

- Observations
- The average of 3 years (= 6 crashes)
- 2.0 crashes/yr
- 0.7 to 4.3 crashes/yr ($\pm 115 \%$)
- The average of 35 years (= 100 crashes)
- 2.8 crashes/yr
- 2.2 to 3.3 ($\pm 20 \%)$
- One site rarely has enough crashes to yield an average with a precision of $\pm 20 \%$

\qquad
\qquad
\qquad
\qquad

Overcoming Variability

- Summary
- Large variability makes it difficult to observe
\qquad a change in crash frequency due to change in geometry at one site \qquad
- Large variability in crash data may frustrate attempts to confirm expected change \qquad
- Large databases needed to overcome large variability in crash data
- Statistics must be used to accurately quantify effect \qquad
\qquad

Questions - Comments?

\qquad
\qquad
\qquad
\qquad
\qquad

2. Safety Evaluation

\qquad

- Safety Prediction Model
- Analysis Procedures
- Texas Roadway Safety Design Software \qquad

\qquad
\qquad
\qquad
\qquad

Safety Prediction Model

- Model
- Crash frequency, $C=C_{b} \times A M F_{l w} \times A M F_{s w} \cdots$
- Model Components \qquad
- Base model, C $_{b}$
- Accident modification factors, AMF $_{i}$
- Empirical Bayes adjustment

Base Model

- Purpose

- Crash frequency for "typical" segment
- Typical: 12 ft lanes, 8 ft outside shoulder, etc.
- Injury (plus fatal) crash frequency
- Calibration
- Analyst can adjust model estimate to better match local conditions
- Know that models are calibrated using Texas data \qquad
- If, after using models for several projects, it appears that models consistently over-estimate or underestimate crash frequency, then calibration may be needed

Accident Modification Factor

- Definition

- Change in crash frequency for a specific change in geometry
- Adapts base model to atypical conditions
- One AMF per design element (e.g., lane width)
- More than 70 AMFs in Workbook \qquad
- Example: 4 lane highway
- Base condition: 12 ft lanes
- Roadway has 10 ft lanes
- AMF = 1.11

Empirical Bayes Adjustment

- Questions
- What if X crashes were reported in last 3 yrs?
- Should we use "C" or "X/3" as best estimate?
- "C" represents average for typical locations
- "X/3" represents location of interest, but has some uncertainty attached
- Answers
- Use weighted average of both " C " and " $X / 3$ "
- Result is more accurate than " C " or " $X / 3$ "
- See Procedures Guide (0-4703-P5)

Empirical Bayes Adjustment

\qquad

- Application
- Need at least 2 years of recent crash data
- Need geometric and traffic data during \qquad period coincident with crash history

\qquad
\qquad
\qquad
\qquad

Analysis Procedures

- Safety Prediction Procedure
- Segmentation Process

\qquad
\qquad
\qquad
\qquad
\qquad

Safety Prediction Procedure

- Overview
- Six steps
- Use base model and AMFs in Workbook
- Evaluate a specific roadway segment or intersection (i.e., facility component)
- See Procedures Guide (0-4703-P5)
- Output
- Estimate of crash frequency for segment or intersection

Step 1

- Identify Roadway Section

- Define limits of roadway section of interest
- May equal limits of design project
- May only be a short length of road within the project
- May include one or more components

Step 2

- Divide Section into Components
- Analysis based on facility components
- Intersection or
- Interchange ramp or
- Roadway "segment"
- "Segmentation Process"
- Discussed in detail shortly

Step 3

- Gather Data for Subject Component

- Data may include
- Roadway geometry (lane width, etc.)
- Traffic (ADT, truck percentage, etc.)
- Traffic control devices (stop sign, signal)
- Crash data (for empirical Bayes analysis) \qquad
- What data do I need?
- Consult Workbook or Spreadsheet

Steps 4, 5, \& 6
4. Compute Expected Crash Frequency - Use equations in Workbook
5. Repeat Steps 3 and 4 for Each Component
6. Add Results for Roadway Section

- Add crash estimates for all components \qquad
- Sum represents the expected crash frequency for the roadway section \qquad
\qquad
\qquad

Segmentation Process

- Overview
- Divide roadway section into homogeneous segments (Step 2)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homogeneous Segment

- Definition
- A homogeneous segment has the same basic
character for its full length
- Lane width Curath
- Lane width
- Curvature
- Shoulder width
- Median type
- Number of lanes
- Median width

Segmentation Process

- Define Initial Segments
- Begin new segment when:
- ADT changes by 5\% or more
- Number-of-lanes changes
- Sharp horizontal curvature begins or ends
- Two-way left-turn lane begins or ends
- Median begins or ends
- Lane width changes by 1 ft or more
- Intersections or ramp terminals are not necessarily segment end points
- Curve length includes spirals, if present

Segmentation Process

- Adjust Length of Short Segments
- If, after subdivision, a segment is < 0.1 mi \qquad
- Combine it with adjacent non-curved segments until the new segment is at least 0.1 mi long
- Use an average value for any design element that changes within this new segment
- Example:
- Lane width increases from 10 ft to 11 ft midway along a 0.1 mi segment \qquad
- Cannot subdivide since length $=0.1 \mathbf{~ m i}$
- So, estimate safety using average lane width of 10.5 ft
\qquad

\qquad
\qquad

TRSD Spreadsheet

- Texas Roadway Safety Design Spreadsheet
- Overview
- Navigation
- Input
- Calculations
- Calibration factors
- Output
- Analysis types

TRSD Overview

- Facility Types
- Freeways
- Rural Highways
- Urban Streets
- Ramps
- Frontage Roads
- Rural Intersections
- Urban Intersections

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Navigation

- Welcome Screen
- Tab for Introduction (User's Guide)

\qquad
\qquad
\qquad
\qquad
\qquad

Navigation

- Introduction Screen
- Spreadsheet selection buttons

Navigation

- Rural Highway Facilities
- Rural two-lane highways
- Rural four-lane highways
\qquad
- Inside barrier
- Outside barrier
- Vertical
- Interchange ramps
- Rural signalized intersection
- Rural unsignalized intersection
$\square \cdots, \ldots$,

\qquad

Calculations		
Calibration factor \longrightarrow	为	，
	㑑	
	为	\％
Crash analysis \longrightarrow		${ }^{\text {a }}$
	Semememe	
	andememememex	${ }_{0} 88$
Crash frequency $>$	为	

Calibration Factors

－Local Calibration Factors
－Factor is multiplied by base model estimate
－If changed to say 1．10，estimate increases 10%
－Models currently calibrated using CRIS data

Calibration Parameters

－Crash Distributions
－For some AMFs
－Values represent proportion of crashes influenced by specific geometric design elements（e．g．，shoulder width，lane width）

Output Summary

- Output

- Estimate of expected crash frequency
- For analysis year and crash period (EB)
- Injury (plus fatal) crashes
- All crash types (single vehicle, rear-end, etc.)
- AMF indicates deviation from "typical" \qquad

Analysis Types

- Types 1 and 2
- Type 1 - No Crash Data
- Use calibrated base model in Workbook
- Type 2 - With Crash Data
- Use calibrated base model and crash data
- Use EB analysis to get weighted average of both
- TRSD Definitions
- Analysis year
- Year for which expected crash frequency estimate is desired
- Crash period
- Time period representing crash data

Analysis Types

- Type 1 - No Crash Data
- Provide geometry and traffic for analysis year \qquad
- Type 2 - With Crash Data
- Provide geometry and traffic for both analysis \qquad year and crash period
\qquad

Analysis Types

- Types 1 and 2 Analyses
- Analysis year can be current year, or
- Any specified year

Analysis Type

- Analysis Type Selection in TRSD
- Indicate the analysis type by selecting \qquad
- No - Type 1 analysis (no crash data)
- Yes - Type 2 analysis (with crash data)

\qquad
\qquad
\qquad
\qquad
\qquad

Questions - Comments?

\qquad
\qquad
\qquad
\qquad
\qquad

\neq 3. Highway Segments

- Overview
- Safety prediction model
- Accident modification factors
- Exercises

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\neq Safety Prediction Model

- Components
- Base model, C_{b}
- Accident modification factors, AMF $_{i}$
- Relationship

$$
\begin{equation*}
C=C_{b} \times A M F_{c r} \times A M F_{g} \ldots \tag{3-15}
\end{equation*}
$$

where:
$C=$ expected injury (plus fatal) crash frequency, crashes/yr;
$C_{b}=$ base injury (plus fatal) crash frequency, crashes/yr;
$A M F_{c r}=$ horizontal curve accident modification factor; and $A M F_{g}=$ grade accident modification factor

Base Model						
- Base Model - Equations in Workbook - Based on typical conditions - Injury (plus fatal) crashes - All crash types						

\qquad
Base Conditions

- Typical conditions
- AMFs are used to adjust base model stimate to conditions at a specific site
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Accident Modification Factors

- AMFs in Workbook
- 13 available for multilane highways
\qquad
- Most are functions of geometric variables (e.g., radius, lane width, etc.) \qquad
- AMFs developed to work with base model (i.e., same underlying base conditions) \qquad

\qquad
\qquad

Accident Modification Factors

- Multilane Highway

- Curve radius	- Shoulder width
- Grade	- Outside
- Outside clearance	- Inside
- No barrier	- Median width
- Some barrier	- No barrier
- Full barrier	- Some barrier
- Side slope	- Full barrier
- Lane width	- Truck presence

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

$\neq \quad$ Example

\qquad

- Questions

- What is the AMF for a 1300-ft radius curve? \qquad
- Speed limit $=55 \mathrm{mph}$
- Curve length $=$ segment length \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\ldots Note About Limits

- Bounds on Input Variables
- Based on range of data used to develop AMF
- If range is exceeded:
- We are not sure what AMF value is
- Extrapolation is risky
- Recommend not exceeding AMF value at limit \qquad
- Example:
- Bound on grade is 8%
- For grade of 9%, what is the AMF?
- Recommend using 1.16 (the value for 8\%)

= Outside Clearance

- No Barrier

- Base Conditions
- 30-ft clearance
- 8-ft shoulder
- Limits

- Clearance $\leq 30 \mathrm{ft}$
- Notes
- Measure clearance from traveled way

\# Outside Clearance

- Some Barrier
- Base Conditions
- 30-ft clearance
- 8-ft shoulder
- Limits
- Clearance ≤ 30 ft
- Notes
- Use Outside Barrier worksheet
- Not for justifying addition or removal

= Example

- Given
- Segment length: 0.75 mi
- Outside shoulder width: 8 ft
- Horizontal clearance: 20 ft
- Two segments of outside barrier
- Left side between MP 1.2 and 1.25
- Length $=0.05 \mathrm{mi}$, offset $\left(\mathrm{W}_{\text {off }}\right)=9.7 \mathrm{ft}$ from traveled way
- Right side between MP 1.3 and 1.33
- Length $=0.03 \mathrm{mi}$, offset $\left(\mathrm{W}_{\text {off }}\right)=11 \mathrm{ft}$ from traveled way
- Question
- What is the outside clearance AMF?

= Example

- Given
- Outside shoulder width: 8 ft
- Horizontal clearance: 20 ft
- Find:
- AMF $_{\text {ocsb }}=1.07$

\mp Outside Clearance

- Full Barrier
- Base Conditions
- 30-ft clearance
- 8-ft shoulder
- Limits
- Clearance ≤ 30 ft
- Notes
- Use Outside Barrier worksheet
- Not for justifying
addition or removal

\neq Outside Shoulder Width

- Base Condition
- 8-ft outside shoulder
- Limits
- Shoulder widths between 0 and 10 ft
- Notes
- If width > 10 ft, use AMF for 10 ft

\qquad
\qquad
\qquad

= Inside Shoulder Width

- Base Condition
- 4-ft inside shoulder
- Limits
- Shoulder widths between 0 and 10 ft
- Notes
- If width > 10 ft, use AMF for 10 ft
- Applies to restrictive median

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mp \quad$ Example

\qquad

- Question
- If a multilane highway's median is widened
\qquad from 40 to 60 ft, what would be the expected crash reduction? \qquad
- Restrictive median, 4-ft inside shoulder, no barrier

40-ft median: AMF $=1.08$ $60-\mathrm{ft}$ median: $\mathrm{AMF}=1.03$ Crash reduction: $100 \times(1-1.03 / 1.08)=4.6 \%$

$=\quad$ Median Width

- Some Barrier
- Base Condition
- 76-ft median \& 4-ft inside shoulders

- Limits
- Median width ≥ 14 ft
- Notes

\mp

Example

\qquad
\qquad
\qquad

- Equations on p. 3-33
- What is the average barrier offset from edge of shoulder ($W_{\text {icb }}$)?
- What proportion of the segment has barrier ($P_{i b}$)?
\rightarrow - Use Inside Barrier sheet to compute
- Crash Period (fill out if crash data available) \qquad
- Analysis Year (always fill out)

$\ldots \quad$ Example

- Given

- In. shoulder width: 4 ft
- Median width: 40 ft
- Find:
- AMF $_{\text {mwsb }}=1.11$

- Now it's your turn...

$\neq \quad$ Example

- Given
-Segment length: 2.0 mi
-Inside shoulder width: 2 ft
-Median width: 20 ft
-Median barrier
-Full length of segment
- Centered in median, 2.5 ft wide
-No crash data
- Question
-What is the median width AMF?

$\mp \quad$ Example

\qquad
Solution

- Step 1. Fill out the Inside Barrier worksheet

Example	
Solution - Step 2. Go to segment worksheet and indicate barrier presence	

\qquad
Solution

- Step 2. Go to segment worksheet and indicate barrier presence

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\ldots \quad$ Truck Presence

- Base Condition
- 16 percent trucks
- Limits
- Truck presence ≤ 25 percent of ADT

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

= Exercise 1: Rural Highway

- Given
- Rural four-lane highway segment
- No crash data available - Lane width: 11 ft
- Length: 2 mi
- Out. shoulder width: 8 ft
- Driveways: 2 res, 4 bus - In. shoulder width: n.a.
- Speed limit: 60 mph - Nonrestrictive median
- Percent trucks: 10
- Median width: 16 ft
- Volume: 22,000 veh/d
- No roadside barrier
- Horiz. clearance: 30 ft
- No curvature
- Side slope: 6 (=1:6)
- Question
- What is the expected crash frequency?

= Exercise 1: Rural Highway

=Exercise 1: Rural Highway

\qquad

=Exercise 1: Rural Highway

= Exercise 1: Rural Highway

\qquad

- Additional Questions
- What does the combined AMF say about this segment, relative to the typical segment?
- Which attributes tend to increase crashes on this segment, relative to the typical segment?

= Exercise 1: Rural Highway

\qquad

- Additional Questions
- From 1/1/1999 to 12/31/2001, the following
\qquad injury (+ fatal) crashes were reported:
- 11 multiple-vehicle, 6 single-vehicle, 1 driveway \qquad
- What is the expected crash frequency (ECF) for these years? \qquad
- $6.00 \mathrm{cr} / \mathrm{yr}$ (= [11 + $6+1] / 3$), or
- $4.54 \mathrm{cr} / \mathrm{yr}$, or
- $5.20 \mathrm{cr} / \mathrm{yr}$
\qquad
\qquad
\qquad

=Exercise 1: Rural Highway

- Additional Questions

- The crash data are a little old. It is currently 2009 and the ADT is 25,000 ; what is the ECF?
- Now it's your turn. . .
\qquad
- Exit sheet without saving, and then re-load it

=Exercise 2: Rural Highway

- Given
- Rural four-lane highway segment
- No crash data available • Lane width: 12 ft
- Length: 2 mi - Out. shoulder width: 6 ft
- Residential driveways: 4 - In. shoulder width: 2 ft
- Speed limit: 60 mph • Median
- Percent trucks: 15
- Restrictive, 20 ft wide
- Volume: 17,000 veh/d - Barrier: centered, 2.5 ft wide, full length of seg.
Curvature: none - No short barrier elements
Horiz. clearance: 30 ft
- Grade: 1\%
- Side slope: 1:6
- Question • Outside barrier: no \qquad
- What is the expected crash frequency?

= Exercise 2: Rural Highway

\qquad

- Answer \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\# Exercise 2

- Answer \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\# Exercise 2

- Question
- If the shoulders are widened to:
- Outside: 10 ft
- Inside: 4 ft
- Side slope: 1:4
- What is the expected crash frequency?
- Hint: change inside shoulder width on both
sheets
- Answer

Questions?

- How about a break for lunch?

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Agenda

\qquad

- Session 4:
- Procedure for freeway segments
\qquad
- Session 5:
- Procedure for interchange ramps
- Session 6:
- Section evaluation
- Session 7:
- Alternatives analysis

$\stackrel{\text { 1 }}{=}$ 4. Freeway Segments

\qquad

- Overview
- Safety prediction model
- Accident modification factors
- Exercises
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

$\xlongequal{+}$ Safety Prediction Model

- Components
- Base model, C_{b}
- Accident modification factors, AMF $_{i}$
- Relationship Page 2-8
$C=C_{b} \times A M F_{k v} \times A M F_{c r} \ldots$
where:
$C=$ expected injury (plus fatal) crash frequency, crashes/yr;
$C_{b}=$ base injury (plus fatal) crash frequency, crashes/yr;
$A M F_{l w}=$ lane width accident modification factor; and
$A M F_{c r}=$ horizontal curve radius accident modification factor

$\stackrel{I}{T} \quad$ Base Model

- Base Model

- Equations in Workbook

- Based on typical conditions
- Injury (plus fatal) crashes
- All crash types

Accident Modification Factors

- Freeway

- Curve radius	- Shoulder rumble strips
- Grade	- Outside clearance
- Lane width	- No barrier
- Shoulder width	- Some barrier
- Outside	- Full barrier
- Inside	- Ramp entrance
- Median width	- Weaving section
- No barrier	- Truck presence
- Some barrier	
- Full barrier	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\underset{\sim}{\perp} \quad$ Example

\qquad

- Given

- Segment length, L: 0.20 mi
\qquad
- Ramp length, $L_{\text {enr }}: 0.15 \mathrm{mi}$
- Length of ramp in segment, $L_{\text {enr,seg }}: 0.10 \mathrm{mi}$
\qquad
- Question
- What is the ramp entrance AMF?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\stackrel{\perp}{\top} \quad$ Example

- Solution

- Average ramp entrance length ($l_{\text {enr }}$) $=792$ ft (0.15 mi)
- Proportion of the segment adjacent to a ramp entrance $\left(P_{\text {enr }}\right)=0.25$
- Answer
- AMF $_{\text {enragg }}=1.05$

$\stackrel{\mathrm{L}}{\mathrm{T}} \quad$ Example

\qquad

- Given
- Segment length, L: 2.1 mi
\qquad
- Length of ramp 1 in segment, $L_{\text {enr,seg: }} 0.2$ mi
- Ramp 1 length, $L_{\text {enr }}: 0.2$ mi
- Length of ramp 2 in segment, $L_{\text {enr,seg: }}: 0.3$ mi
- Ramp 2 length, $L_{\text {enr }}: 0.3$ mi
- Crash data are available
- Question
- What is the ramp entrance AMF?

$\frac{1}{T}$
- Example

$\stackrel{I}{T} \quad$ Example

- Solution

- Step 2. Go to segment worksheet and indicate ramp entrance presence indicate ramp entrance presence
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\frac{\perp}{T}$ Example

- Given

- Segment length, L: 0.25 mi
- Length of weaving in segment, $L_{\text {wev, seg: }}: 0.2 \mathrm{mi}$
- Weaving section length, $L_{\text {wev }}: 0.25 \mathrm{mi}$
- Question
- What is the weaving section AMF?

$\frac{1}{T} \quad$ Example \qquad
- Solution
- Equations on p. 2-23

\qquad
- What is the average weaving section length ($l_{\text {wev }}$)?
\qquad
- What proportion of the segment is adjacent to a weaving section ($P_{\text {wever }}$)?
\rightarrow - Use Weaving Section sheet to compute \downarrow
- Crash Period (fill out if crash data available)
- Analysis Year (always fill out) \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\stackrel{I}{+} \quad$ Example

- Solution

- Average weaving section length ($I_{\text {wev }}$) $=1320 \mathrm{ft}$ (0.25 mi)
- Proportion of the segment adjacent to a weaving section $\left(P_{\text {wev }}\right)=0.40$
- Answer
- AMF $_{\text {wev/agg }}=1.05$
- Now it's your turn..

$\stackrel{\perp}{+} \quad$ Example

- Given

- Segment length, L: 1.0 mi
- Weaving section 1
- Length of weaving in segment, $L_{\text {wev,seg }}: 0.5 \mathrm{mi}$
- Weaving section length, $L_{\text {wev }}: 0.5 \mathrm{mi}$
- Weaving section 2
- Length of weaving in segment, $L_{\text {wev,seg }}: 0.4 \mathrm{mi}$
- Weaving section length, $L_{\text {wer }}: 0.4$ mi
- Crash data are available
- Question
- What is the weaving section AMF?

$\frac{1}{\mathrm{~T}}$
- Example

$\frac{1}{T}$
- Example
Solution - Step 2. Go to segment worksheet and indicate weaving section presence

\qquad

Solution

- Step 2. Go to segment worksheet and
\qquad
\qquad
\qquad
\qquad
\qquad

$\stackrel{\perp}{\top}$ Exercise 3: Freeway

```
- Given - Lane width: }11\textrm{ft
```

- Crashes:
- 1/1/1999 to 12/31/2001
$-13 \mathrm{mv}, 6 \mathrm{sv}, 1$ exit ramp
- Lanes: 6
- Area type: Urban
- Length: 1 mi
- 2 entrances and 2 exits
- Speed limit: 60 mph
- Percent trucks: 10
- Volume, veh/d:

Crash period: 82,000
Analysis year: 86,000

- No curve or grade
- Question

Lane width: 11 ft

- Out. shoulder width: 6 ft
- In. shoulder width: 4 ft

- Median

- 50 -ft wide, no barrier
- Rumble strips present
- Horiz. clearance: 15 ft
- Outside barrier: some
- 0.8 mi length, 8 ft offset
- Two weaving sections:
-0.5 mi and 0.4 mi , entire length on segment
- Ramp ent. in weave section
- What is the expected crash frequency?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Expocted Crash Frequancy
Calibtaition fector (i):
Mimitipleveticicle Crast Analtsis

Tpeeted crash frequency (C), crash
Clash data 2 ime petiod (y) y. .r:

Total expected ciash fiequency, crashesy: $\quad{ }^{734}$
\qquad
\qquad
\qquad

$\xlongequal{\mathcal{T}}$ Exercise 3: Freeway

\qquad

- Additional Question
- What is the crash frequency if the cross section is changed?
- Lane width: 12 ft
- Outside shoulder width: 10 ft
- Outside barrier offset: 12 ft \qquad
- Horizontal clearance: 19 ft
- Hint: change only the "Analysis Year" data
- Now it's your turn. . .
- Exit sheet without saving, and then re-load it

$\frac{1}{T}$ Exercise 4: Freeway	
- Given - Crashes: - 4/1/2003 to $3 / 31 / 2006$ - $5 \mathrm{mv}, 10 \mathrm{sv}$, 1 ent. ramp - Lanes: 4 - Area type: Rural - Length: 2.1 mi - 2 entrances and 2 exits - Speed limit: 60 mph - Percent trucks: 20 - Volume, veh/d: - Crash period: 27,000 - Analysis year: 29,000 - Question - What is the expected crash	- No curve or grade - Lane width: 12 ft - Out. shoulder width: 10 ft - In. shoulder width: 4 ft - Median width: 40 ft - No median barrier - No rumble strips - Horiz. clearance: 20 ft - No roadside barrier - Two ramp entrances: - 0.2 mi and 0.3 mi , entire length on segment - No weaving sections frequency?

$\stackrel{\perp}{\top}$ Exercise 4: Freeway

- Solution

$\stackrel{1}{T}$ Exercise 4: Freeway

- Solution

$\stackrel{\perp}{\top}$ Exercise 4: Freeway

- Answer
- Question
- What is the expected crash frequency if six 0.06-mi lengths of barrier are installed along the roadside (three lengths per side)?
- Width from traveled way to face of barrier: 12 ft
- Hint: use the Analysis Year column and the Outside Barrier worksheet
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\stackrel{\perp}{\bar{T}}$ Exercise 4: Freeway

- Answer
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Questions - Comments?

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

F Safety Prediction Model

\qquad

- Components
- Base models
\qquad
- $\mathrm{C}_{\mathrm{b}, \mathrm{r}}=$ base rate \times ramp volume - No accident modification factors

\qquad
\qquad
\qquad
\qquad
\qquad

R Ramp Types

\qquad

- Non-Frontage Road Ramps Page 5-6 \qquad

\qquad
\qquad

\qquad
\qquad a - when used in directional interchanges

\qquad
Exercise 5: Ramp
- Given
- Freeway ramp
• Volume: 2500 veh/d
• Type: Entrance
• Configuration: slip
- Question
- What is the expected crash frequency?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Exercise 5: Ramp
- Additional Question
- What is the crash frequency for an exit
ramp with similar conditions?
- Ramp type: Exit
- All other data are unchanged
- Now it's your turn. . .
\qquad
Additional Question
- What is the crash frequency for an exit
\qquad
\qquad
- Ramp type: Exit
\qquad
\qquad
\qquad
\qquad
Exercise 6: Ramp
- Higen
- Volume: 2500 veh/d
- Type: Exit
- Contiguration: Diagonal
Question
- What is the expected crash frequency?
\qquad

Highway ramp \qquad
Volume: 2500 veh/d

- Type: Exit \qquad
\qquad
\qquad
\qquad
\qquad
Exercise 6: Ramp
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 6: Ramp
- Additional Questions
- What is the crash frequency for an entrance
ramp with similar conditions?
- Ramp type: Entrance
- All other data are unchanged
- What is the crash frequency of the entrance
ramp if it is reconfigured?
- Ramp type: Entrance
- Ramp configuration: Non-free-flow loop
- All other data are unchanged

\qquad
Additional Questions

- What is the crash frequency for an entrance
\qquad
\qquad
- Ramp type: Entrance \qquad ramp if it is reconfigured?
- Ramp type: Entrance \qquad
\qquad
\qquad

6. Section Evaluation

- Review Safety Prediction Procedure
- Road Section Evaluation
- Project Evaluation
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Safety Prediction Procedure

\qquad

- Six Steps

1. Identify roadway section
2. Divide section into facility components
3. Gather data for subject component
4. Compute expected crash frequency \qquad
5. Repeat steps 3 and 4 for each additional component
6. Add up results for roadway section
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 7: Section Evaluation

- Given

- Four-lane rural highway
- Input data to follow
- Question
- What is the expected crash frequency for the highway?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 7: Section Evaluation

\qquad

- Procedure
- Split highway into homogeneous segments

- Analyze each segment separately
- Total up crash frequencies for section

Exercise 7: Section Evaluation

Given

- Highway segment "a"
- No crash data
- Length: 1.36 mi
- Driveways: 5 bus.
- Speed limit: 60 mph
- Percent trucks: 13
- Volume: 4000 veh/d
- No curve or grade
- Lane width: 12 ft
- Question
- What is the expected crash frequency?

Exercise 7: Section Evaluation

- Answers
- Segment "a"

Exercise 7: Section Evaluation

- Given
- Highway segment "b"
- No crash data
- Length: 0.34 mi
- Driveways: 1 ind, 1 bus
- Speed limit: 60 mph
- Percent trucks: 13
- Volume: 4000 veh/d
- Curve radius: 1430 ft
- Curve length: 0.16 mi
- No grade
- Question
- What is the expected crash frequency?

Exercise 7: Section Evaluation

- Answers
- Segment " b "
- Entire highway section
- Lane width: 12 ft
- Out. shoulder width: 8 ft
- Median:
- Nonrestrictive
- Width: 14 ft
- No barrier
- Horiz. clearance: 30 ft
- No roadside barrier - Side slope: 1:4
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 7: Section Evaluation

- Observations

C-beres)

Exercise 8: Project Evaluation

- Given
- Two intersecting rural highways
- North/south highway
- 4-lane depressed median - 2-mi segment
- East/west highway - 4-lane TWLTL
- 1.36-mi segment
- Intersection
- Stop controlled
- Question
- What is the expected crash frequency?

Exercise 8: Project Evaluation

- Procedure
- Split facility into components
- North/south road
- East/west road
- Intersection (discussed in previous workshop)

Exercise 8: Project Evaluation

- Procedure

- Analyze each component separately
- Crash frequency
- Combined AMF
- Total up crash frequencies for facility

Exercise 8: Project Evaluation

\qquad

- Answers
- North/south road (Ex. 2-a)
- East/west road (Ex. 7 "a")
- Intersection (given)
- Entire facility
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 8: Project Evaluation

- Additional Questions
- What is the best measure of safety benefit?
- Which facility component(s) may yield the most benefit through design change?
- Answers
- Expected number of crashes reduced is the best measure of safety benefit
- Segments or intersections with many crashes have more potential for a large safety benefit through a design change, so. . .

Exercise 8: Project Evaluation

- Additional Questions
- What does the combined AMF tell us?
- What does it mean when the combined AMF is greater than 1.0?

- Answers

- The combined AMF tells us about "relative risk"
- Values larger than 1.0 indicate the component is potentially less safe than the "typical" one
- So. . .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 8: Project Evaluation

- Additional Question

- How do we use both crash frequency and combined AMF to make design decisions?
- Answer

1) Identify components that have a combined AMF > 1.0
2) Rank them in order of crash frequency
3) Identify potential design changes at those components with a larger crash frequency

Questions - Comments?

\qquad
\qquad
\qquad
\qquad
\qquad

7. Alternatives Analysis

- Analysis Questions
- How do you incorporate safety considerations in the design process?
- Which alternative is the best?

Exercise 9: Alternatives Analysis

- Current Design
- Two intersecting rural highways
- North/south highway - 4-lane restrictive median
- East/west highway - 4-lane TWLTL
- Intersection
- Stop controlled
- 25-degree skew angle

- From Exercise 8

Exercise 9: Alternatives Analysis

- Analysis Process

1) Identify components that have a combined \qquad AMF > 1.0
2) Rank them in order of crash frequency
3) Identify potential design changes at those components with a larger crash frequency

Exercise 9a: Alternatives Analysis

- Alternative A

- Treatment
- Increase shoulder width for north/south road
- Repeat the analysis for Exercise 2, but:
- Outside shoulder: increase from 6 to 10 ft
- Inside shoulder: increase from 2 to 4 ft \qquad
- Side slope: increase from 1:6 to 1:4

Exercise 9a: Alternatives Analysis

- Question
- Is this alternative safer than the current configuration?
- Answer
- Expected crash frequencies:
- North/south road (Ex. 2-b):
- East/west road (Ex. 7 "a"):
- Intersection: \qquad
- Facility:

Exercise 9a: Alternatives Analysis

- Question
- Given \qquad
- \$750,000 construction cost
- 25-year life span \qquad
- $\$ 100,000$ benefit per crash prevented
- Is this alternative viable? \qquad
- Answer

Exercise 9a: Alternatives Analysis

- Discussion
- Requires increase in side slope
- Increase in shoulder width likely to provide offsetting benefit

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 9b: Alternatives Analysis

- Alternative B
- Treatment \qquad
- Realign east/west road to eliminate skew
- Requires addition of four curves \qquad
- Crash estimates from Exercises 2 and 7

Exercise 9b: Alternatives Analysis

\qquad

- Question
- Is this alternative safer than the current configuration?
- Answer
- Expected crash frequencies: \qquad
- North/south road (Ex. 2-a):
- East/west road (Ex. 7 "b"+...+ "e"):
- Intersection: \qquad
- Facility:
\qquad
\qquad
\qquad
\qquad

Exercise 9b: Alternatives Analysis

- Question
- Given
- $\$ 1,800,000$ construction cost
- 25-year life span
- \$100,000 benefit per crash prevented
- Is this alternative viable?
- Answer

Exercise 9b: Alternatives Analysis

- Discussion
- Requires some right-of-way acquisition
- Addition of curves increases crashes
- +0.15 crashes/yr (= 0.56 - 0.41)
- Eliminating skew reduces crashes
- -1.36 crashes/yr (= 3.32 - 1.96)
\qquad
- Observations
- If the intersection were signalized, skew \qquad would not pose a safety problem
- Signal warrants are not satisfied

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise 9c: Alternatives Analysis

- Analysis

Exercise 9c: Alternatives Analysis

- Analysis

- Northbound exit ramp \qquad
- Volume: 1000 veh/d
- Type: Exit \qquad
- Configuration: Diagonal
- Question \qquad
- What is the expected crash frequency?
- Answer \qquad
\qquad
\qquad

Exercise 9c: Alternatives Analysis

- Analysis

- Southbound entrance ramp
\qquad
- Volume: 1000 veh/d
- Type: Entrance
- Configuration: Diagonal
- Question \qquad
- What is the expected crash frequency?
- Answer \qquad
\qquad
\qquad

Exercise 9c: Alternatives Analysis

- Analysis

Exercise 9c: Alternatives Analysis

- Question
- Is this alternative safer than the current configuration?
- Answer
- Expected crash frequencies:
\qquad
- North/south road (Ex. 2-a):
- East/west road (Ex. 7 "a"):
- Ramps + terminals: \qquad
- Facility:
\qquad
\qquad

Exercise 9c: Alternatives Analysis

- Question
- Given \qquad
- $\$ 6,500,000$ construction cost
- 25-year life span \qquad
- $\$ 100,000$ benefit per crash prevented
- Is this alternative viable? \qquad
- Answer
\qquad
\qquad
\qquad

Exercise 9c: Alternatives Analysis

- Discussion
- Operational benefits (not computed) may still justify the project
- Analysis does not consider rate of traffic growth over time at this location

Exercise 9c: Alternatives Analysis

Finding	Current	Alt. A	Alt. B	Alt. C
Construction Cost, $\$ 1000$				
Safety benefit, $\$ 1000 / \mathbf{y r}$				
Capital cost, $\$ 1000 / \mathbf{y r}$				
Benefit-cost ratio				
Net benefit, $\$ 1000 / \mathrm{yr}$				

\qquad

Questions

- Which alternative is best based on safety \qquad benefit and cost?
- What does the larger net benefit for Alt. B tell us?

Exercise 9: Alternatives Analysis

- Alternative Selection Summary
- Establish a goal of reducing total crash frequency by some amount
- Exclude projects that do not provide minimum benefit
- Exclude projects that exceed available funds \qquad
- If funds are earmarked for this project:
- Use net benefit to select project
- If unspent funds can be used for other projects:
- Use benefit-cost ratio to select projects
\qquad
\qquad
\qquad

Exercise 9: Alternatives Analysis

- Observations

- Our computations reflect only safety impact
- Different conclusions may be reached if other impacts are considered
- Final decision must consider all impacts
- Safety
- Environment
- Traffic operations
- Right-of-way
- Construction costs

- Choose the most cost-effective alternative
\qquad
\qquad

Questions - Comments?

\qquad
\qquad

Summary

- Main Points

1. Large variability in crash data makes it difficult to observe a change in crash frequency due to change in geometry at one site
2. Statistical evaluation of many crashes at many treated sites is needed to quantify true effect of a change
3. Adherence to design controls does not ensure safety
4. Many geometric design elements influence safety
5. Evaluation should focus on key design elements
6. Evaluation is most helpful in complex or atypical situations
7. Engineer should weigh all impacts when deciding
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wrap-Up

- Questions or Comments?
- A Request
- Please fill out the course review form
- Training course coordinators
- Return course evaluations and sign-in sheets to Rory Meza in Design Division
- Thank You!

EXERCISES

1. RURAL MULTILANE HIGHWAY SEGMENT
2. RURAL MULTILANE HIGHWAY SEGMENT
3. FREEWAY SEGMENT
4. FREEWAY SEGMENT
5. INTERCHANGE RAMP
6. INTERCHANGE RAMP
7. SECTION EVALUATION
8. PROJECT EVALUATION

9a. ALTERNATIVE A
9b. ALTERNATIVE B
9c. ALTERNATIVE C

EXERCISE 1: RURAL MULTILANE HIGHWAY SEGMENT

INPUT DATA

Basic Roadway Data

Number of through lanes: 4
Segment length: 2 mi
Number of driveways: 2 residential, 4 business
Traffic Data
Speed limit: 60 mph
Percent trucks represented in ADT: 10 percent
Average daily traffic (ADT): 22,000 veh/d

Geometric Data

Presence of horizontal curve: No
Grade: 0 percent
Cross Section Data
Lane width: 11 ft
Outside shoulder width: 8 ft
Median type: Nonrestrictive
Median width: 16 ft
Presence of barrier in median: None
Roadside Data
Horizontal clearance: 30 ft
Presence of barrier on roadside: None
Side slope: 1:6

OUTPUT SUMMARY

What is the expected crash frequency? \qquad
What is the combined AMF? \qquad
\square
What does the combined AMF say about this segment, relative to the typical segment? \qquad

Which attribute(s) tend to increase the crash rate of this segment, relative to the typical segment?

If the following injury + fatal crashes were reported from $1 / 1 / 1999$ to $12 / 31 / 2001$:
Multiple-vehicle: 11
Single-vehicle: 6
Driveway: 1
What is the expected crash frequency?

If the ADT increases to $25,000 \mathrm{veh} / \mathrm{d}$, what is the expected crash frequency?

EXERCISE 2: RURAL MULTILANE HIGHWAY SEGMENT

INPUT DATA

Basic Roadway Data

Number of through lanes: 4
Segment length: 2 mi
Number of driveways: 4 residential
Traffic Data
Speed limit: 60 mph
Percent trucks represented in ADT: 15 percent
Average daily traffic (ADT): 17,000 veh/d

Geometric Data

Presence of horizontal curve: No
Grade: 1 percent
Cross Section Data
Lane width: 12 ft
Outside shoulder width: 6 ft
Inside shoulder width: 2 ft
Median type: Restrictive
Median width: 20 ft
Presence of barrier in median: Full

- In center of median
- Inside barrier width: 2.5 ft
- No short barrier elements present

Roadside Data

Horizontal clearance: 30 ft
Presence of barrier on roadside: None
Side slope: 1:6

OUTPUT SUMMARY

What is the expected crash frequency?
What is the combined AMF? \qquad

If the shoulders are widened to:
Outside shoulder width: 10 ft
Inside shoulder width: 4 ft
Side slope: 1:4
What is the expected crash frequency?
What is the combined AMF?
\qquad

EXERCISE 3: FREEWAY SEGMENT

INPUT DATA

Crash Data

Time period: $1 / 1 / 1999$ to $12 / 31 / 2001$
Count of injury + fatal crashes:

- 13 multiple-vehicle
- 6 single-vehicle
- 1 ramp-exit-related

Basic Roadway Data

Number of through lanes: 6
Area type: Urban
Segment length: 1 mi
Number of ramp entrances: 2
Number of ramp exits: 2
Traffic Data
Speed limit: 60 mph
Percent trucks represented in ADT: 10 percent
Average daily traffic: $82,000 \mathrm{veh} / \mathrm{d}$ (crash period); $86,000 \mathrm{veh} / \mathrm{d}$ (analysis year)

Geometric Data

Presence of horizontal curve: No
Grade: 0 percent

Cross Section Data

Lane width: 11 ft
Outside shoulder width: 6 ft
Inside shoulder width: 4 ft
Median type: Nonrestrictive
Presence of barrier in median: None
Median width: 50 ft
Presence of shoulder rumble strips: Yes

Roadside Data

Horizontal clearance: 15 ft
Presence of barrier on roadside: Some

- Length $=0.8 \mathrm{mi}$, offset $=8 \mathrm{ft}$

Access Data

Presence of one or more ramp entrances: No
Presence of one or more weaving sections: Yes

- Weaving section 1 : length $=0.5 \mathrm{mi}$, entire length on segment
- Weaving section 2: length $=0.4 \mathrm{mi}$, entire length on segment

OUTPUT SUMMARY

What is the expected crash frequency?
What is the combined AMF? \qquad
\square
If the cross section is changed to:
Lane width: 12 ft
Outside shoulder width: 10 ft
Outside barrier offset: 12 ft
Horizontal clearance: 19 ft
What is the expected crash frequency?

EXERCISE 4: FREEWAY SEGMENT

INPUT DATA

Crash Data

Time period: $4 / 1 / 2003$ to $3 / 31 / 2006$
Count of injury + fatal crashes:

- 5 multiple-vehicle
- 10 single-vehicle
- 1 ramp-entrance-related

Basic Roadway Data

Number of through lanes: 4
Area type: Rural
Segment length: 2.1 mi
Number of ramp entrances: 2
Number of ramp exits: 2
Traffic Data
Speed limit: 60 mph
Percent trucks represented in ADT: 20 percent
Average daily traffic: $27,000 \mathrm{veh} / \mathrm{d}$ (crash period); $29,000 \mathrm{veh} / \mathrm{d}$ (analysis year)

Geometric Data

Presence of horizontal curve: No
Grade: 0 percent
Cross Section Data
Lane width: 12 ft
Outside shoulder width: 10 ft
Inside shoulder width: 4 ft
Median type: Nonrestrictive
Presence of barrier in median: None
Median width: 40 ft
Presence of shoulder rumble strips: No
Roadside Data
Horizontal clearance: 20 ft
Presence of barrier on roadside: None

Access Data

Presence of one or more ramp entrances: Yes

- Ramp entrance 1: length $=0.2 \mathrm{mi}$, entire length on segment
- Ramp entrance 2: length $=0.3 \mathrm{mi}$, entire length on segment

Presence of one or more weaving sections: No

OUTPUT SUMMARY

What is the expected crash frequency? \qquad
What is the combined AMF? \qquad
\square
If the following roadside barrier pieces are added:
Six identical pieces (three pieces per side)
Length: 0.06 mi
Width from traveled way to face of barrier: 12 ft
What is the expected crash frequency? \qquad
\square

EXERCISE 5: INTERCHANGE RAMP

INPUT DATA

Traffic Data

Average daily traffic on ramp: $2500 \mathrm{veh} / \mathrm{d}$
Geometric Data
Ramp type: Entrance
Ramp configuration: Slip

OUTPUT SUMMARY

What is the expected crash frequency? \qquad
\square
For an exit ramp with similar conditions:
Ramp type: Exit
All other input data are unchanged
What is the expected crash frequency? \square

EXERCISE 6: INTERCHANGE RAMP

INPUT DATA

Traffic Data

Average daily traffic on ramp: $2500 \mathrm{veh} / \mathrm{d}$ Geometric Data

Ramp type: Exit
Ramp configuration: Diagonal

OUTPUT SUMMARY

What is the expected crash frequency? \qquad
\square
For an entrance ramp with similar conditions:
Ramp type: Entrance
All other input data are unchanged
What is the expected crash frequency? \square
If the entrance ramp is reconfigured:
Ramp configuration: Non-free-flow loop
All other input data are unchanged
What is the expected crash frequency? \qquad

EXERCISE 7: SECTION EVALUATION

Location: Rural multilane highway segment "a"

INPUT DATA

Basic Roadway Data

Number of through lanes: 4
Segment length: 1.36 mi
Number of driveways: 5 business

Traffic Data

Speed limit: 60 mph
Percent trucks represented in ADT: 13 percent
Average daily traffic (ADT): 4000 veh/d
Geometric Data
Presence of horizontal curve: No
Grade: 0 percent
Cross Section Data
Lane width: 12 ft
Outside shoulder width: 8 ft
Median type: Nonrestrictive
Median width: 14 ft
Presence of barrier in median: None
Roadside Data
Horizontal clearance: 30 ft
Presence of barrier on roadside: None
Side slope: 1:4

OUTPUT SUMMARY

Record your results in the table on the next page.

EXERCISE 7: SECTION EVALUATION (continued)

Location: Rural multilane highway segment "b"

INPUT DATA

Basic Roadway Data

Number of through lanes: 4
Segment length: 0.34 mi
Number of driveways: 1 industrial, 1 business

Traffic Data

Speed limit: 60 mph
Percent trucks represented in ADT: 13 percent
Average daily traffic (ADT): $4000 \mathrm{veh} / \mathrm{d}$

Geometric Data

Presence of horizontal curve: Yes

- Curve radius: 1430 ft
- Curve length: 0.16 mi

Grade: 0 percent

Cross Section Data

Lane width: 12 ft
Outside shoulder width: 8 ft
Median type: Nonrestrictive
Median width: 14 ft
Presence of barrier in median: None
Roadside Data
Horizontal clearance: 30 ft
Presence of barrier on roadside: None
Side slope: 1:4

OUTPUT SUMMARY

Record all results for segments "a" and "b" in this table.

Facility Component	Expected Crash Frequency (crashes/yr)	Combined AMF
Segment"""		
Segment"b"		
Total for roadway section		

What is the expected crash frequency for segments "b" through "e"?

EXERCISE 8: PROJECT EVALUATION
(CURRENT CONFIGURATION)
Location: Two intersecting rural multilane highways
Please complete the table and answer the questions below.

Facility Component	Exercise Number	Expected Crash Frequency (crashes/yr)	Combined AMF
North-south road	2-a (before change)		
East-west road	7 "a"		
Intersection	Given	3.32	1.12
Total for facility			

What is the best measure of safety benefit? \qquad
Which facility component(s) may yield the most benefit through design change? \qquad

What does the combined AMF tell us? \qquad
\qquad
What does it mean when the combined AMF is greater than 1.0 ? \qquad
\qquad
How do we use both crash frequency and combined AMF to make design decisions? \qquad
\qquad
\qquad
\qquad

EXERCISE 9a: ALTERNATIVE A

Description: Widen the inside and outside shoulders on the north-south road. To provide the increased width while remaining within the right-of-way, it is necessary to reduce the side slope.

Please complete the table and answer the questions below.

Facility Component	Exercise Number	Expected Crash Frequency (crashes/yr)	Combined AMF
North-south road	2 -b (after change)		
East-west road	7 "a"		
Intersection	Given	2.95	1.05
Total for facility			

Is this alternative safer than the current configuration (see Exercise 8)? \qquad
How many crashes are reduced per year, relative to the current configuration? \qquad
Given the following assumptions:
$\$ 750,000$ construction cost to widen the shoulders on the north-south road
25 -year life span for the project
$\$ 100,000$ benefit per crash reduced

Is this alternative viable? \qquad
What is the net benefit for Alternative A, relative to the current configuration? \qquad

EXERCISE 9b: ALTERNATIVE B

Description: Realign the east-west road to eliminate the intersection skew. The realignment requires the addition of two curves on the east-west road.

Please complete the table and answer the questions below.

Facility Component	Exercise Number	Expected Crash Frequency (crashes/yr)	Combined AMF
North-south road	$2-\mathrm{a}$ (before change)		
East-west road	7 "b" through "e"		
Intersection	Given	1.96	0.72
Total for facility			

Is this alternative safer than the current configuration (see Exercise 8)? \qquad
How many crashes are reduced per year, relative to the current configuration? \qquad
Given the following assumptions:
$\$ 1,800,000$ construction cost to realign the east-west road
25 -year life span for the project
$\$ 100,000$ benefit per crash reduced
Benefit:

Cost: \square

Is this alternative viable? \qquad
What is the net benefit for Alternative B, relative to the current configuration? \qquad

EXERCISE 9c: ALTERNATIVE C

Description: Grade-separate the roads. Use a diamond interchange with four diagonal ramps.

INPUT DATA

Traffic Data

Average daily traffic on ramp: $1000 \mathrm{veh} / \mathrm{d}$
Geometric Data
Ramp type: Exit
Ramp configuration: Diagonal

OUTPUT SUMMARY

What is the expected crash frequency? \qquad
\square
For an entrance ramp with similar conditions:
Ramp type: Entrance
All other input data are unchanged
What is the expected crash frequency? \qquad
\square

EXERCISE 9c: ALTERNATIVE C (continued)

Description: Grade-separate the roads. Use a diamond interchange with four diagonal ramps.
Please complete the table and answer the questions below.

Interchange Component	Exercise Number	Expected Crash Frequency (crashes/yr)	Combined AMF
Western ramp terminal	Given	0.20	0.40
Eastern ramp terminal	Given	0.12	0.40
Southbound exit	6-a		
Northbound entrance	6-b		
Northbound exit	9c		
Southbound entrance	9c		
Total for interchange			

Facility Component	Exercise Number	Expected Crash Frequency (crashes/yr)	Combined AMF
North-south road	$2-\mathrm{a}$ (before change)		
East-west road	7 "a"		
Total for interchange	from table above		
Total for facility			

Is this alternative safer than the current configuration (see Exercise 8)? \qquad
How many crashes are reduced per year, relative to the current configuration? \qquad
Given the following assumptions:
$\$ 6,500,000$ construction cost to grade-separate the roads
25 -year life span for the project
$\$ 100,000$ benefit per crash reduced
Benefit:
Cost:

crashes/yr reduced $\mathrm{x} \$ 100,000 /$ crash reduced $=\$ \square \mathrm{yr}$
construction cost $\div \square \mathrm{yr}$
yr

Is this alternative viable? \qquad
What is the net benefit for Alternative C, relative to the current configuration? \qquad

INCORPORATING SAFETY INTO THE HIGHWAY DESIGN PROCESS:
 MULTILANE HIGHWAYS AND FREEWAYS WORKSHOP COURSE REVIEW FORM

Date:

Location:
Your Agency: \qquad
Your Position: \qquad

Course Content (circle one)

1. Did the course meet your expectations?

Comments:
\qquad
2. Was the material presented at the correct level of difficulty?
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
Comments:
\qquad
\qquad
3. Was the topic of the course covered adequately (nothing left out, no one topic overemphasized)?
Comments:
\qquad
\qquad
4. Was the software easy to use?
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
Comments:

General Observations

5. What did you like most about the course?
6. What did you like least about the course?
7. What can we do to improve this workshop?

8. Other Comments:

Thank you for taking the time to complete this course evaluation form. Please make sure the course instructor receives it before you leave.

